BELLHOUSING WITH INTEGRATED OIL COOLER

PRODUCT DESCRIPTION

- Series PTÖK: bellhousing with oil air cooler
- Model series for electric motors 0.55 22 kW (IMB 5/IMB 35/IMV 1)
- Noise reduced design, form B
- Cooling capacity 0.95 5.15 kW
- 4 model series available (ø200 ø350)
- All bellhousing lengths comply with VDMA 24561
- The standard bellhousing can be replaced easily with a bellhousing with oil cooler at any time due to identical installation lengths
- Horizontal IMB 5/IMB 35 and vertical -IMV 1 - use possible
- Foot flanges type PTFL and PTFS mountable acc. to VDMA 24561

			Order code					
Type Size			Length		Ø Fan wheel	Pump face code		
PTÖK	250	/	120	/	LR28	/	20	

TECHNICAL ADVANTAGES

- High cooling capacity with low noise output on the smallest installation space
- Suitable as reflux or leak oil cooler
- Requires no electrical installation
- Easy to maintain due to simple installation and removal of the cooling element
- Due to standard damping, reduction of noise level up to 6 dB (A) possible

TECHNICAL DATA

Operating pressure:	16 bar				
Load change:	1 x 10°, f = 2 Hz				
Max. static pressure:	10 bar				

	ize	[W]		Iges	Dimensions [mm]																			
Type	E-motor s	Power [k	Shaft	Foot flan type	A	AI	A2	A3	в	øD1	ø D2	D3	ø D4	G	н	н	H2	L	u	L2	м			
PTÖK 200	80	0.55	19 x 24	PTFL 200	242	139	101.5	203	70	200	130	165	145	G 1/2	285	180	100	100 110 118	88 10,3	10,3	м10			
	90 S + L	1.1	24 x 50															124 140						
100 L PTÖK 250 112 M	100 L	2.2 3.0	00 /0	8 x 60 PTFL 250 PTFS 250	310	164	144.5	267	102	252	180	215	190	G 3/4	329	199	130	120 124 128	101.5	22	M12			
	112 M	4	28 x 60															135 148 175						
PTÖK	132 S	5.5	38 × 80 PTFL 300	PTFL 300	310	310	101	168 5	267	126	300	230	265	65 234	G 3/4	384	234	150	144 150 155	128.5	8	M12		
300 +M	+M	7.5		PTFS 300					120			200		0 0/4	004	234		168 196	120.5	0				
PTÖK 350 180 M + 1	160 M + L	11 15	42 x 110	PTFL 350 PTFS 350	355	230	210.5	316	152	250	250	300	260	260 6 2/4	2/4 424	251	175	188 204	165	6	M16			
	180 M + L	18.5 22	48 x 110		333	335	333	300	333	333	200	1.0.0	0.0	152	350	200	300	200	G 3/4	420	231	175	228 256	

BELLHOUSING WITH INTEGRATED OIL COOLER

Туре	Cooling capacity ⁽¹⁾ P [kW]	Power E-motor ⁽³⁾	Air flow	Input power	Noise level ⁽²⁾	Correlation cooling and motor power		
	$\Delta t = 40 k$	[kW]	[m³/h]	[W]	[dB(A)]	%		
РТÖК 200	0.95	0.55 - 1.5	72	20	52	63 - 100		
PTÖK 250	2.1	2.2 - 4	260	30	58	53 - 95		
PTÖK 300	3.22	5.5 - 7.5	430	90	69	43 - 59		
PTÖK 350	5.15	11 - 22	780	140	70	23 - 46		

COOLING CAPACITY

- (1) The indicated capacity relates to the nomina rotation for the driven machine and is 1,500 min⁻¹. In case of different speeds, please contact HBE.
- (2) Noise levels of damped version with bellhousing and electric motor are measured with 1 m distance to the tested objects. The istated values of noise level will be various depending on the electric motor.
- (3) Direction of pump rotation always clockwise (looking on pump shaft)

Should no additional heat sources have an effect on the hydraulic aggregate between 30 and 40 percent of the engine output is lost as heat energy when the engine is operated at an average efficiency. A part of this heat is released outwards from the individual components. Above all, the surface area of the tank plays an important role here. However, some heat energy remains which may lead to overheating of the oil. In order to avoid this, the usage of an additional cooler is required. In the vast majority of cases, a cooling capacity of between 20 to 30 percent of the engine output is sufficient – also with aggregates with a smaller tank surface area. Meanwhile, it is hard to imagine oil hydraulics without bellhousing coolers. They are simple to install, they require very little space - particularly due to the ventilation system no longer being required - and, in most applications, achieve the complete required cooling capacity. See figure 1.

The values from figure 1 apply for an optimal amount of oil flow and applies to one Δt from 40 K. Should the oil flow be notably low or not sufficiently continual, the installation of a separate cooling circuit could be necessary – even this is effortlessly convertible with PTÖK bellhousing coolers. Figure 1 shows the dependency of the cooling capacity with the amount of oil flow. You will achieve the actual cooling capacity by multiplying the values for 1K Dt with the relevant Δt .

Specific cooling capacity P/ Δt depending on oil flow Q and temperature difference $\Delta t = 1$ K (oil inlet to air inlet).