

# Solutions for Fluid Technology



VS + VSI GEAR FLOW METERS

#### **VS FLOW METER**

VS positive displacement flow meters are volume rate measuring sensors based on the meshing gear principle and are designed for use with liquids. Two precisely matched gear wheels are enclosed in a very accurately machined housing. Gear rotation is sensed by a non-contacting signal pick-up system. Each tooth produces one impulse.

The space between the gear teeth, when fully enclosed on both sides by the housing, constitutes measuring chambers. Fluid flow causes the gears to rotate and the incoming flow is separated into discrete volumes within these chambers i. e. the volume of liquid passing through the unit will cause rotation of the gears by exactly one tooth pitch.

This volume is known as the Volume/Impulse ( $V_m$ ) and is stated in cc/Imp. It is used to define the size of a flow meter.

# EXPLANATIONS FOR PREAMPLIFIER OF SIGNAL PICK-UP SYSTEM

The non-contact pick-up sensors consist of two differential magneto resistors, which are circumferentially offset from one another by 1/4 of a tooth pitch. The signals of both pick-up sensors are digitised with two signal amplifiers and amplified via followed short circuit proof push-pull output stages.

The square wave output signals are bidirectional and may be simply processed by any external electronics, plc control or computer. The processing of the 90° phase angle between signals enables recognition of flow direction and impulse rate conversion with a factor of 1, 2 and 4.

The signal frequency is proportional to the momentary flow rate (volume rate) dependent on the particular flow meter size. The frequency range extends from 0 – 2000 Hz. The preamplifier is protected against reverse polarity and incorrect connection. For medium temperatures between -40°C and 120°C (-22°F and 248°F) the unit is mounted directly on the flow meter cover.

## SENSOR SYSTEMS FOR EXTENDED TEMPERATURE RANGE

For liquid temperatures from -40°C up to 210°C a special pick up system is available.

### **VSI HIGH DEFINITION PREAMPLIFIER**

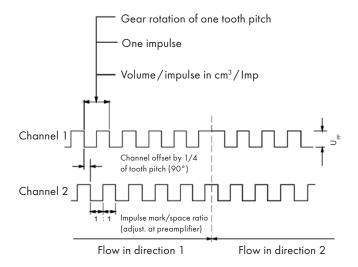
The VSI High Definition Preamplifier supplies digital signals with a higher resolution of the measured value. The high definition preamplifier is available in two versions.

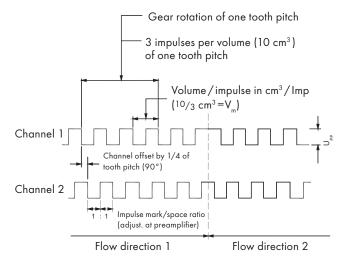
The first version has a selectable resolution between 4 and 64 angle steps which enables an increase of the K-factor by 16 or 64 with a flank evaluation. The other version offers more performance. A very big advantage is the compatibility. With this version, preamplifiers of the standard VS and the VSI series are interchangeable. The customer can therefore easily replace or upgrade a preamplifier himself. In addition, this preamplifier electronics offers an selectable resolution between 4 and 128 angular steps, which allows a maximum increase of the K-factor by 32 or 128 with a flank evaluation.

#### **EX-TYPES**

Intrinsically safe models, with approval code II 1G Ex ia IIC T4-T6, are supplied for applications in potentially explosion-hazardous areas. VSE delivers these types with isolation switch amplifier models MK 13 P Ex0/24 VDC/K15.

## **VS FLOW METER SELECTION**


For trouble-free and safe operation of the flow meters the correct selection of type and size is decisive. Due to the great number of different applications and flow meter versions, the technical data in the VSE catalogues are of general character.


Certain characteristics of the devices depend on type, size and measuring range as well as on the medium to be measured. For exact flow meter selection please contact VSE.

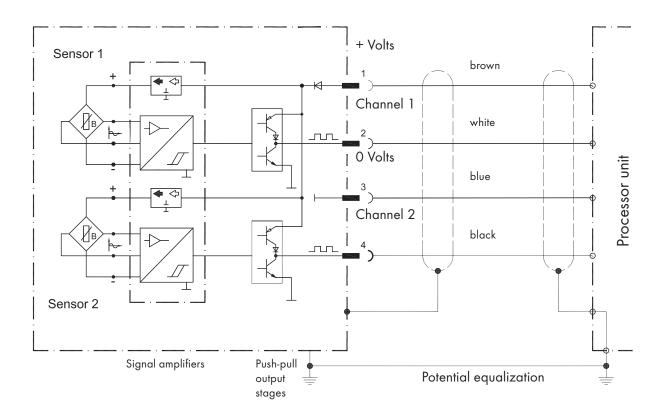
The current publication of this catalogue supersedes all information from previous publications. VSE reserves the right to make changes and substitutions. VSE is not liable for any printing errors. Reproduction, including excerpts, is permitted only after written approval by VSE. Last revised: 10/2020

# **OUTPUT SIGNALS OF PREAMPLIFIER**

## FLOW METER VS 0.02... VS 4






#### **VOLTAGE RANGES**

Supply voltages:  $U_v = 10 \dots 28 \text{ V DC}$ Impulse voltages:  $U_{pp} = U_v - 1 \text{ V}$ 

### **VOLTAGE RANGES**

Supply voltages:  $U_v = 10 \dots 28 \text{ V DC}$ Impulse voltages:  $U_{pp} = U_v - 1 \text{ V}$ 

### **BLOCK DIAGRAM**



### **FLOW METER VS 10**

## RANGES OF APPLICATIONS

#### **APPLICATIONS**

All liquids that can be pumped and have known lubrication properties can be measured, for example: paraffin, kerosene, benzine, diesel, Skydrol, mineral oils, hydraulic oils including fire resistant fluids, inks, dyes and paints, greases, polyurethane, polyol and isocyanates, Araldite, glues, pastes and creams, resins, waxes and many others.

# RANGES OF APPLICATIONS IN THE AUTOMOTIVE INDUSTRY

Braking system test stands

Fuel consumption measurement

Polyurethane foams for steering wheels, fascia, seats etc.

Paint spraying systems

Steering systems

Batching and filling of motor oils, brake fluids, anti-freeze, corrosion preventatives, waxes etc.

Adhesive coatings for windscreens, headlights, engine housings etc.

#### **HYDRAULICS**

Volume and flow rate measurement

Leakage and rupture monitoring

Cylinder speed and position measurement

Positioning and step control

Measurement, control and regulation of flow rates and volumes

Test stands for pumps, motors, valves, proportionals and servo-valves

Synchronised multi-cylinder monitoring

Filling and additive blending

### **DYES AND PAINTS**

Paint spraying systems Batching and filling Volume, flow rate and consumption Monitoring of mixing ratios

#### **PLASTICS TECHNOLOGY**

Mixing, moulding and batching systems for single and multicomponent fluid plastics

Consumption measurement of e.g.:

Epoxy adhesives and potting compounds (resins and hardeners) for transformers, coils, relays, condensers, armatures, initiators, auto-electronics

Measuring, control and regulation of single components and mixing ratios

Silicon potting compounds

Polyurethane foams (polyol and isocyanate) for steering wheels, seals, shoes, soles, surf boards, furniture, computer casings, isolation etc.

Hot adhesive

### **CHEMICAL INDUSTRY**

Flow rate and volume measurement in process plants and plant systems

Dosing and filling of chemical products such as liquid plastics, adhesives, resins, hardeners, potting compounds, solvents, fuels, foams, plasticisers, dyes and paints, oils and synthetic products etc., application in laboratories and manufacturing plants (in normal and explosion-hazardous areas)

Control and regulation of single components, mixing ratios and consumption of various components

Leakage measurement and leakage monitoring on plants

Measurement, indication and logging of data for product quality assurance

Special designs on request

# **TECHNICAL DATA OVERVIEW**

| Size    | Flow range* | Flow range*  | K-factor | K-factor   |
|---------|-------------|--------------|----------|------------|
|         | l/min       | GPM          | lmp./l   | Imp./Gal.  |
| VS 0.02 | 0.002 2     | 0.0005 0.53  | 50,000   | 189,272.00 |
| VS 0.04 | 0.004 4     | 0.0011 1.06  | 25,000   | 94,636.00  |
| VS 0.1  | 0.01 10     | 0.0026 2.64  | 10,000   | 37,854.40  |
| VS 0.2  | 0.02 18     | 0.0053 4.76  | 5,000    | 18,927.20  |
| VS 0.4  | 0.03 40     | 0.0079 10.57 | 2,500    | 9,463.60   |
| VS 1    | 0.05 80     | 0.0132 21.13 | 1,000    | 3,785.44   |
| VS 2    | 0.1 120     | 0.0264 31.70 | 500      | 1,892.72   |
| VS 4    | 1 250       | 0.2642 66.00 | 250      | 946.36     |
| VS 10   | 1.5 525     | 0.39 138.00  | 300      | 1,135.63   |
|         | *at 21 cSt  | *at 21 cSt   |          |            |

| Accuracy              | up to 0.3 % of measured value at viscosity > 20 cSt<br>(< 20 cSt reduced accuracy) |              |                          |                         |  |  |  |
|-----------------------|------------------------------------------------------------------------------------|--------------|--------------------------|-------------------------|--|--|--|
| Repeatability         | ± 0.05 % under sar                                                                 | ne operatin  | g conditions             |                         |  |  |  |
| Materials             | Body                                                                               |              | Bearings                 | Seals                   |  |  |  |
|                       | EN-GJS-400-15 (EN                                                                  | 1563)        | Ball / Plain / Plain     | FPM (standard)          |  |  |  |
|                       | Stainless Steel 1.43                                                               | 05           | (Copper-free)            | NBR, PTFE, EPDM         |  |  |  |
|                       |                                                                                    |              | depend on liquid         |                         |  |  |  |
| Max. operating        | Cast iron                                                                          |              | Stainless steel          |                         |  |  |  |
| pressures             | 315 bar/4,568 psi                                                                  |              | 450 bar / 6,526 psi      |                         |  |  |  |
| Medium temperature    | Standard                                                                           |              | -40 ≤ 120° C             |                         |  |  |  |
|                       | Ex-design                                                                          |              | -20 ≤ 100° C (T4)        |                         |  |  |  |
|                       | High temperature                                                                   |              | -40 ≤ 210° C             |                         |  |  |  |
| Viscosity ranges      | 1100,000 cSt                                                                       |              |                          |                         |  |  |  |
| Mounting positions    | Unrestricted, on sub                                                               | plate with s | ide or bottom connectior | 15                      |  |  |  |
| Filtering             | VS 0.02/0.04/0.1                                                                   | 10 µm        | Exceptions               |                         |  |  |  |
| for ball bearing type | VS 0.2/0.4                                                                         | 20 µm        |                          | l clearance en request  |  |  |  |
|                       | VS 1/2                                                                             | 50 µm        | Flow meters with specia  | r clearance on requesi. |  |  |  |
|                       | VS 4                                                                               | 50 µm        |                          |                         |  |  |  |
| Noise level           | Max. 72 dB(A)                                                                      |              |                          |                         |  |  |  |
| Preamplifier          | 10 to 28 Volt (DC)                                                                 |              |                          |                         |  |  |  |

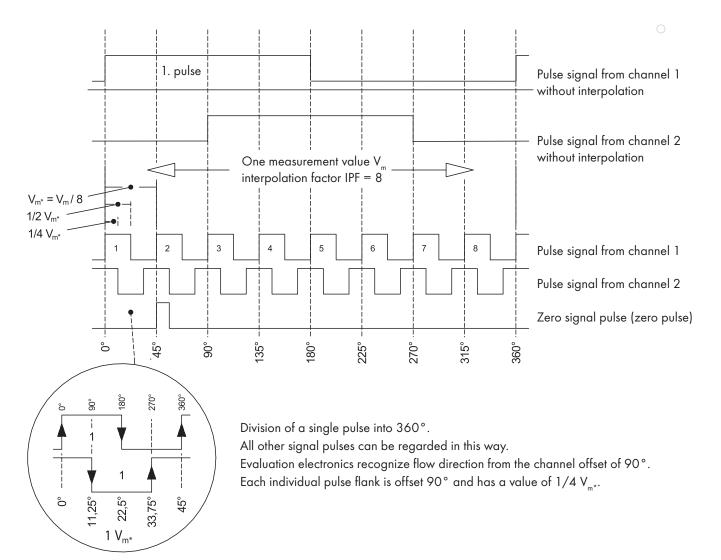
# 6 VS 10 FLOW METER

# **TECHNICAL DATA**

| Size  | Flow range<br>I/min |               | K-Factor<br>Imp. / I | Imp./Gal. |
|-------|---------------------|---------------|----------------------|-----------|
| VS 10 | 1.5 525             | 0.3963 138.69 | 300                  | 1,135.63  |

| Accuracy           | up to 0.3 % of measured value at viscosity > 20 cSt<br>(< 20 cSt reduced accuracy) |                                                   |                 |  |  |  |  |  |
|--------------------|------------------------------------------------------------------------------------|---------------------------------------------------|-----------------|--|--|--|--|--|
| Repeatability      | ± 0.05 % under same ope                                                            | erating conditions                                |                 |  |  |  |  |  |
| Materials          | Body                                                                               | Body Bearings Seals                               |                 |  |  |  |  |  |
|                    | EN-GJS-600-3                                                                       | Ball/Plain gearings                               | FPM (Standard)  |  |  |  |  |  |
|                    | EN 1563                                                                            | depend on liquid                                  | NBR, PTFE, EPDM |  |  |  |  |  |
| Max. operating     | 400 bar/6,000 psi                                                                  |                                                   |                 |  |  |  |  |  |
| pressure           |                                                                                    |                                                   |                 |  |  |  |  |  |
| Medium temperature | Standard                                                                           | -40 ≤ 120° C                                      |                 |  |  |  |  |  |
|                    | Ex-design                                                                          | -20 ≤ 100° C (T4)                                 |                 |  |  |  |  |  |
|                    | High temperature                                                                   | not available                                     |                 |  |  |  |  |  |
| Viscosity range    | 1 100,000 cSt                                                                      |                                                   |                 |  |  |  |  |  |
| Mounting positions | Unrestricted, on subplate                                                          | with side or bottom connect                       | ions            |  |  |  |  |  |
| Filtering          | 50 μm                                                                              |                                                   |                 |  |  |  |  |  |
| Preamplifier       | Short circuit proof and rev<br>additional current on signed                        | erse polarity proof 10 28<br>al output max. 20 mA | 3 V DC/45 mA,   |  |  |  |  |  |

## THE VSI HIGH DEFINITION PREAMPLIFIER


For precise and exact flow and volume measurements, it is necessary to increase the resolution as high as possible by resolving the measurement  $V_m$ , even more than with conventional preamplifiers.

With the VSI-preamplifier versions a selectable resolution of up to 128 flanks (32 pulses) per period can be attained (see table below).

This means that you can resolve the volume measurement  $V_{\rm m}$  with this preamplifier to a maximum of  $1/128~V_{\rm m}.$ 

For the evaluation, this means that a part volume of 1/128 V<sub>m</sub> from pulse flank to pulse flank (for quadruple evaluation or flank count) is measured, or a full signal pulse is counted as part volume of 1/32 V<sub>m</sub> (pulse count). This individually programmed high resolution enables you to set the volume measurement  $V_m$  optimally for each provided case of application. Furthermore, new applications can be availed with the higher resolution

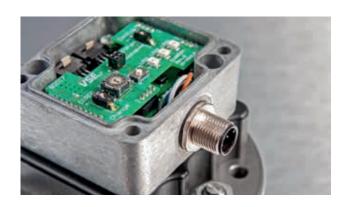
- Measuring, controlling and regulating in lower flow ranges
- Measuring, controlling and regulating in zero flow
- Measuring, controlling and regulating in both flow directions
- Measuring, controlling, dosing and filling of small volumes



# **TECHNICAL DATA OF VSI PREAMPLIFIER**

| Pickup sensor       | 2 x MR sensor (sine and cosine signals)                                                                                                                                                                                                                                                                                                                                                                                                          |  |  |  |  |  |
|---------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|--|
| Number of sensors   | Two pick up sensors for generating the sine and cosine signal                                                                                                                                                                                                                                                                                                                                                                                    |  |  |  |  |  |
| Adjustment          | Dffset adjustment by two potentiometers                                                                                                                                                                                                                                                                                                                                                                                                          |  |  |  |  |  |
| Resolution          | Programmable in a range of 1 – 64 flanks per volume measurement $V_{m}$                                                                                                                                                                                                                                                                                                                                                                          |  |  |  |  |  |
| Frequency           | Frequency multiplication: programmable in a range of 1 – 16 times the frequency of the                                                                                                                                                                                                                                                                                                                                                           |  |  |  |  |  |
|                     | pick-up sensors                                                                                                                                                                                                                                                                                                                                                                                                                                  |  |  |  |  |  |
| Output signals      | Channel A, channel B, zero channel Z                                                                                                                                                                                                                                                                                                                                                                                                             |  |  |  |  |  |
| Channel A and B     | Two signal outputs for emitting the digital flow sensor signals; between channel A and chan-<br>nel B there is a channel offset of 90°                                                                                                                                                                                                                                                                                                           |  |  |  |  |  |
| Flow direction      | Recognition of flow direction from channel offset of the signals from channel A to channel B                                                                                                                                                                                                                                                                                                                                                     |  |  |  |  |  |
| Zero signal Z       | Zero signal, marks the flow of one volume measurement V <sub>m</sub>                                                                                                                                                                                                                                                                                                                                                                             |  |  |  |  |  |
| Outputs             | 3 current limiting and short-circuit-proof push-pull output stages (channel A, channel B, zero signal Z); driver current approx. 300 mA at 24 V power supply; small saturation voltage up to 30 mA load current; short switching times; reverse voltage protection by integrated free-run diodes against V <sub>b</sub> and GND; temperature protection switching with hysteresis; outputs are of high impedance in case of error; ESD protected |  |  |  |  |  |
| Operating voltage   | V <sub>b</sub> = 10 28 VDC                                                                                                                                                                                                                                                                                                                                                                                                                       |  |  |  |  |  |
| Current consumption | I <sub>no load</sub> = approx. 40 mA; total current consumption depending on loading of outputs                                                                                                                                                                                                                                                                                                                                                  |  |  |  |  |  |




# TECHNICAL DATA OF VSI PREAMPLIFIER – UPGRADE (HIGH PERFORMANCE)

| Pickup sensor       | 2 x MR-sensor (sine and cosine signals)                                                                                                                                                                                                                                                                                                                                                                                                      |
|---------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Configuration       | automatically via peripheral board                                                                                                                                                                                                                                                                                                                                                                                                           |
| Resolution          | programmable 1, 2, 3, 4, 5, 8, 10, 12, 16, 24, 32                                                                                                                                                                                                                                                                                                                                                                                            |
| Frequency           | up to 100kHz                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| Output signals      | Channel A, channel B, direction signal "DIREC" (high positiv; low negativ)                                                                                                                                                                                                                                                                                                                                                                   |
| Channel A and B     | Two signal outputs for emitting the digital flow sensor signals; between channel A and chan-<br>nel B there is a channel offset of 90°                                                                                                                                                                                                                                                                                                       |
| Flow direction      | Recognition of flow direction from channel offset of the signals from channel A to channel B or from the separate direction signal on pin 5, direction can be changed by the preamplifier electronics                                                                                                                                                                                                                                        |
| Outputs             | 3 current limiting and short-circuit-proof push-pull output stages (channel A, channel B, DIREC); driver current approx. 200 mA at 24 V power supply; small saturation voltage up to 30 mA load current; short switching times; reverse voltage protection by integrated free-<br>run diodes against V <sub>b</sub> and GND; temperature protection switching with hysteresis; outputs are of high impedance in case of error; ESD protected |
| Error messages      | Electronics error (e.g. defective interpolator); sensor error(e.g. sensor break-off); configura-<br>tion necessary; overload (flow peaks)                                                                                                                                                                                                                                                                                                    |
| Operating voltage   | V <sub>b</sub> = 10 28 VDC                                                                                                                                                                                                                                                                                                                                                                                                                   |
| Current comsumption | I <sub>no load</sub> = approx. 65 mA; total current consumption depending on loading of outputs                                                                                                                                                                                                                                                                                                                                              |

# **ADVANTAGES**

Easy replaceable, Upgrade for standard VS, higher resolution, more stability under harsh conditions



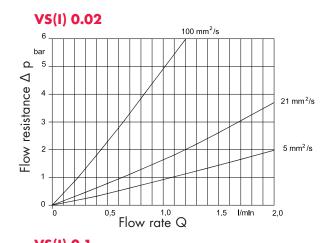


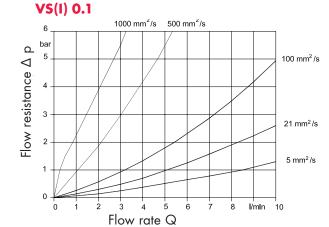
## 10 INTERPOLATION FACTOR AND RESOLUTION

| Interpolation<br>factor | Imp/V <sub>m</sub> | Max. resolution<br>(evaluation of<br>signal flanks) | <b>Resolution V</b> <sub>m*</sub><br>(volume measure-<br>ment V <sub>m*</sub> ) [ml] | Max. resolution<br>(angle degrees) | Frequency<br>f <sub>max*</sub> |
|-------------------------|--------------------|-----------------------------------------------------|--------------------------------------------------------------------------------------|------------------------------------|--------------------------------|
| 1                       | 1                  | 4 (quadrupling)                                     | V <sub>m</sub> / 4                                                                   | 90°                                | f <sub>max</sub> x 1           |
| 2                       | 2                  | 8                                                   | V <sub>m</sub> / 8                                                                   | 45°                                | f <sub>max</sub> x 2           |
| 3                       | 3                  | 12                                                  | V <sub>m</sub> /12                                                                   | 30°                                | f <sub>max</sub> x 3           |
| 4                       | 4                  | 16                                                  | V <sub>m</sub> /16                                                                   | 22.5°                              | $f_{max} \times 4$             |
| 5                       | 5                  | 20                                                  | V <sub>m</sub> /20                                                                   | 18°                                | $f_{max} \times 5$             |
| 8                       | 8                  | 32                                                  | V <sub>m</sub> /32                                                                   | 11.25°                             | f <sub>max</sub> x 8           |
| 10                      | 10                 | 40                                                  | V <sub>m</sub> /40                                                                   | 9°                                 | f <sub>max</sub> x 10          |
| 12                      | 12                 | 48                                                  | V <sub>m</sub> /48                                                                   | 7.5°                               | f <sub>max</sub> x 12          |
| 16                      | 16                 | 64                                                  | V <sub>m</sub> /64                                                                   | 5.625°                             | f <sub>max</sub> x 16          |
| 24*                     | 24                 | 96                                                  | V <sub>m</sub> /96                                                                   | 3.75°                              | f <sub>max</sub> x 24          |
| 32*                     | 32                 | 128                                                 | V <sub>m</sub> /128                                                                  | 2.8125°                            | f <sub>max</sub> x 32          |

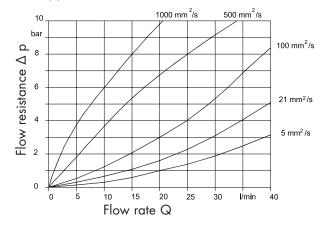
\*Only VSI upgrade version

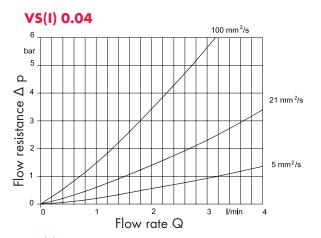
- Column 1: Programmable interpolation factor IPF (programming is done in the factory)
- Column 2: Pulses per volume measurement V<sub>m</sub>
- Column 3: Maximum resolution of the signal flanks. The signal flanks channels 1 and 2 are evaluated
- Column 4: Volume measurement V<sub>m\*</sub> resulting from the maximum resolution of the signal flanks
- Column 5: Maximum resolution in angle degrees at resolution of signal flanks
- Column 6: Maximum frequency  $f_{_{max^{\ast}}}$  at maximum flow  $$Q_{_{max}}$$  and programmed interpolation factor IPF

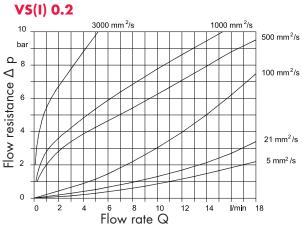

In practice the maximum flow  $Q_{max}$  of the flow meter is seldom run so that a lower frequency can be calculated. The maximum frequency is then calculated according to the following formula:


$$f_{max^*} = \frac{(Q_{max})^* IPF}{V_m}$$
 formula 1

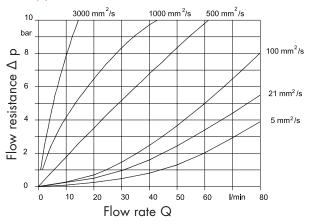
**Example** Flow meter VSI 1/10... max. flow rate of the system at maximum capacity Q = 40 l/min = 666.667 ml/sec; IPF = 10; $V_m^{max} = 1 \text{ ml/pulse; } f_{max^*} = 6666.67 \text{ Hz}$ = 6.66667 kHz

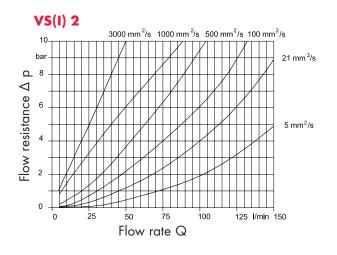

At max. flow<sub>max</sub> = 40 l/min, the flow meter VSI 1/10... outputs a frequency of  $f_{max}$  = 6666.67 Hz.

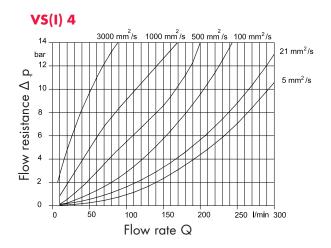

# **FLOW RESPONSE CURVES**



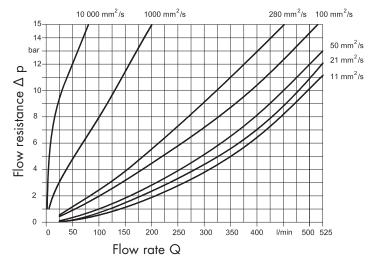




VS(I) 0.4



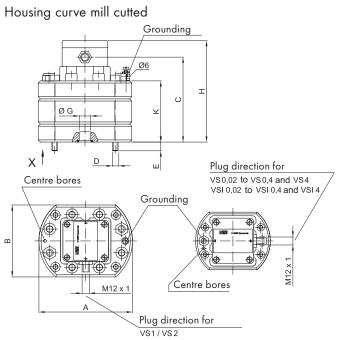





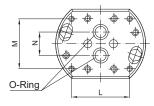





VS(I) 10



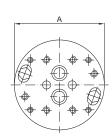

# VS(I) FLOW METER DIMENSIONS VS(I) 0.02 ... VS(I) 4

## **CAST IRON VERSION**



# CAST IRON VERSION CONNECTION DRAWING

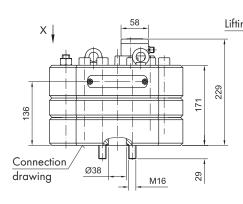
View X

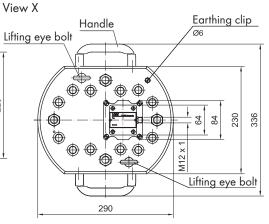


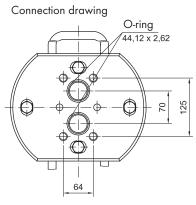

## STAINLESS STEEL VERSION CONNECTION DRAWING

Housing not mill cutted

View X


\*\* E = Stainless Steel 1.4305

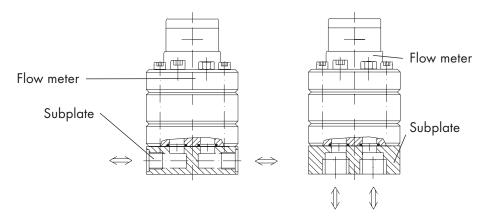




| Size   |     |     |      |      |      |      |       |      |    |    |    |       |        | Wei       | ght       |
|--------|-----|-----|------|------|------|------|-------|------|----|----|----|-------|--------|-----------|-----------|
| VS/VSI | A   | В   | С    | D    | E    | ø G  | н     | К    | L  | M  | Ν  | 0-    | Ring   | GG*<br>kg | E**<br>kg |
| 0.02   | 100 | 80  | 91   | M 6  | 12   | ø 9  | 114   | 58   | 70 | 40 | 20 | 11    | x 2    | 2.8       | 3.4       |
| 0.04   | 100 | 80  | 91.5 | M 6  | 11.5 | ø 9  | 114.5 | 58.5 | 70 | 40 | 20 | 11    | x 2    | 2.8       | 3.4       |
| 0.1    | 100 | 80  | 94   | M 6  | 9    | ø 9  | 117   | 61   | 70 | 40 | 20 | 11    | x 2    | 2.8       | 3.4       |
| 0.2    | 100 | 80  | 93.5 | M 6  | 9.5  | ø 9  | 116.5 | 60.5 | 70 | 40 | 20 | 11    | x 2    | 3.0       | 3.7       |
| 0.4    | 115 | 90  | 96.5 | M 8  | 11.5 | ø 16 | 119.5 | 63.5 | 80 | 38 | 34 | 17.96 | x 2.62 | 4.0       | 5.0       |
| 1      | 130 | 100 | 101  | M 8  | 12   | ø 16 | 124   | 68   | 84 | 72 | 34 | 17.96 | x 2.62 | 5.3       | 6.8       |
| 2      | 130 | 100 | 118  | M 8  | 15   | ø 16 | 141   | 85   | 84 | 72 | 34 | 17.96 | x 2.62 | 6.7       | 8.4       |
| 4      | 180 | 140 | 143  | M 12 | 20   | ø 30 | 166   | 110  | 46 | 95 | 45 | 36.17 | x 2.62 | 14.7      | 18.4      |

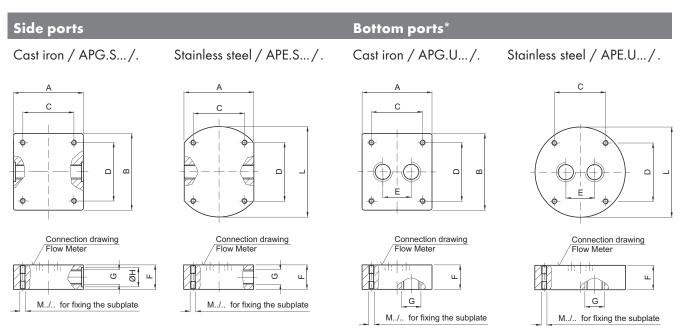
\*GG = Cast Iron EN-GJS-400-15 (EN 1563) Dimensions are specified in mm

# DIMENSIONS VS(I) 10



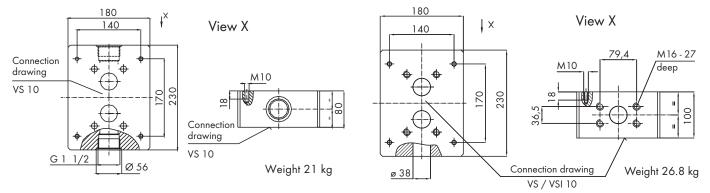






Weight 70 kg

**SIDE PORTS** 

**BOTTOM PORTS** 




# **AP SUBPLATE DIMENSIONS**

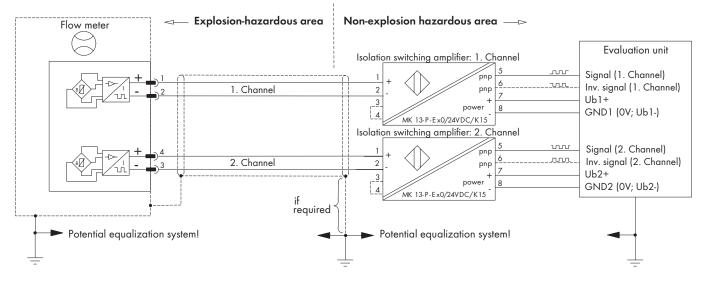


\* Both bottom ports (G) for size APG 4 U and APE 4 U have a displacement of 90° to the shown drawings.

### APG 10 S GON/1



Dimensions are specified in mm


|                    | VS/VSI                   |                                 | G       | F      | øΗ   | E O |
|--------------------|--------------------------|---------------------------------|---------|--------|------|-----|
|                    | 0.02 / 0.04<br>0.1 / 0.2 |                                 | G 1/4   | 35     | ø 20 | 26  |
|                    | 0.02 / 0.04<br>0.1 / 0.2 |                                 | G 3/8   | 35     | ø 23 | 30  |
| Affiliated<br>size | 0.02 / 0.04<br>0.1 / 0.2 | G pipe thread<br>classification | G 1/2   | 35     | ø 28 | 38  |
|                    | 0.4 / 1 / 2              |                                 | G 1/2   | 35     | ø 28 | 46  |
|                    | 0.4 / 1 / 2              |                                 | G 3/4   | 40     | ø 33 | 52  |
|                    | 1/2                      |                                 | G 1     | 55     | ø 41 | 55  |
|                    | 4                        |                                 | G11/4   | 70     | ø 51 | 60  |
|                    | 4                        |                                 | G1 1/2  | APU=70 | ø 56 | 72  |
|                    | 4                        |                                 | G 1 1/2 | APS=80 | ø 56 | 72  |

| Size                 |         |     |     |     |     |     | Depth | Weight |
|----------------------|---------|-----|-----|-----|-----|-----|-------|--------|
| VS/VSI               | AP      | Α   | В   | C   | D   | L 2 | Μ     | kg     |
| 0.02/0.04<br>0.1/0.2 | AP.02   | 80  | 90  | 40  | 70  | 100 | M6/12 | 1.8    |
| 0.4                  | AP.04   | 90  | 100 | 38  | 80  | 115 | M8/15 | 2.7    |
| 1/2                  | AP.1    | 100 | 110 | 72  | 84  | 130 | M8/15 | 3.6    |
| 4                    | APG4    | 120 | 130 | 100 | 110 | -   | M8/15 | 7.4    |
|                      | APG4 UG | 140 | 120 | 120 | 100 | -   | M8/15 | 7.4    |
|                      | APE.4   | 140 | -   | 100 | 110 | 180 | M8/15 | 12     |

Only for APG.U ... / . ; APE.U ... / .
 Only for APE.S ... / . ; APE.U ... / .

Special designs on request

#### VSE FLOW METERS IN EX-DESIGN / THE BARRIER AMPLIFIER 16



### **VSE FLOW METERS IN EX-DESIGN**

The VSE flow meters of the VS series in Ex-design are approved for applications in potentially explosion-hazardous areas and are always operated in conjunction with barrier amplifiers. They have blue markings and offer the necessary Ex-protection security. The type plate shows the necessary description according to DIN EN 60079, the type key and the safety-related and electric data. VSE can supply the flow meters with the barrier amplifiers type MK 13-P-Ex 0/24 VDC/K15.

# **THE BARRIER AMPLIFIER** MK 13-P-EX 0/24 VDC/K15

The barrier amplifier MK 13-P-Ex 0/24 VDC/ K15 enables an isolated transmission of binary

switching status. It has an intrinsically safe control circuit and is certified according to 🚯 II(1) GD [EEx ia] II C.

There is a galvanic separation from the control circuit to the output circuit and to the power supply. For the transmission of two channels, two barrier amplifiers of this version are necessary. The control circuit can be monitored concerning wire breaking and short circuit (the monitoring can be switched off via a wire jumper).

An error in the control circuit stops the signal output. One pluse-switching short circuit proof transistor output (PNP-output) provides the digital signal of the connected channel.

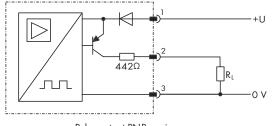
| Flow meter               | VSE connection cable                     | e, blue               | Barrier                  | am    | plifier  |                         |       |      |    |
|--------------------------|------------------------------------------|-----------------------|--------------------------|-------|----------|-------------------------|-------|------|----|
| Type VS****-32 Q1*/*     | Shielded; 4 x 0.34 m                     | m²                    | Type M                   | к 1;  | B-P-Ex   | 0/24 \                  | /DC   | /K15 |    |
| BVS 05 ATEX E 071 X      | PUR                                      |                       | PTB 06A                  | TEX 2 | 2025     |                         |       |      |    |
| 😡    1G Ex ia    C T4-T6 |                                          |                       | 🐵 II (1)                 | GD [  | [EEx ia] | ll C                    |       |      |    |
| U <sub>i</sub> = 18.5 V  | $R = 0.053 \Omega/m$                     |                       | U_ = 9,                  | ,9 V  |          |                         |       |      |    |
| I = 24 mA                | $L = 0.85 \ \mu H/m (x)$                 |                       | I_ = 22                  | 2 mA  | <b>\</b> |                         |       |      |    |
| $P_{i} = 100 \text{ mW}$ | $C_{A-A} = 55 \text{ pF}/\text{m}$ (x)   |                       | $P_{o} = 5.$             | 4 mV  | V        |                         |       |      |    |
| $R_i = 0$                | $C_{A-S} = 105 \text{ pF/m}$ (x)         |                       |                          |       |          |                         |       |      |    |
| $L_i = 0$                | [(x) = Measured at 100                   | 00 Hz]                |                          |       |          |                         |       |      |    |
| C <sub>i</sub> = 0.27 µF |                                          |                       | llC                      |       |          |                         | IIB   |      |    |
|                          |                                          |                       | Lo/mH                    | 1     | 5        | 10                      | 2     | 10   | 20 |
|                          |                                          |                       | Co/µF                    | 1.1   | 0.75     | 0.65                    | 5     | 3.5  | 3  |
|                          |                                          |                       |                          |       |          |                         |       |      |    |
| Temperature class T4     |                                          | T5                    |                          |       | T6       |                         |       |      |    |
| Ambient temperature - 2  | $0^{\circ}C \le T_{amb} \le 95^{\circ}C$ | - 20°C ≤ <sup>-</sup> | $T_{amb} \le 70^{\circ}$ | С     | - 20     | )°C ≤ T <sub>a</sub>    | b     | 55°C |    |
| Liquid temperature - 2   | 0°C≤T <sub>Med</sub> ≤100°C              | - 20°C ≤ 7            | T <sub>Med</sub> ≤ 75°   | С     | - 20     | $0^{\circ}C \leq T_{N}$ | led ≤ | 60°C |    |



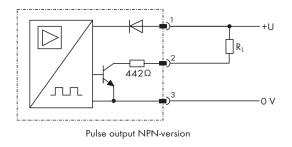
# Measuring Controlling

# OPTION FOR STAINLESS STEEL FLOW METERS VS 0.04 ... VS 4

The pick-up system consists of one or two sensor units, which are screwed into the cover of the VS flow meter and of a downstream switched amplifier. This amplifier is connected with the flow meter by means of a temperature resistant cable and has to be installed outside the high temperature area, where the ambient temperature should not exceed 50°C.


The following pictures show the respective connection of the electronic readout.

For long cable lengths and high input impedance of the readout, it is recommended to use shielded cables.


# **CONNECTION DIAGRAMS**



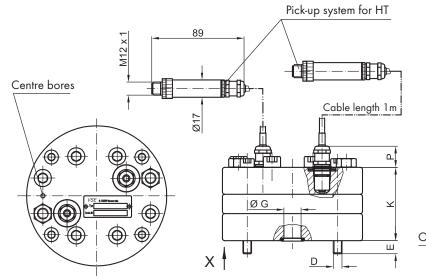
Pulse output PP-version

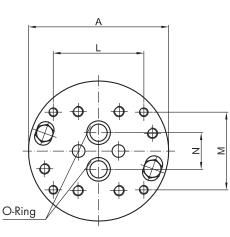






# 18 TECHNICAL DATA / FLOW METER DIMENSIONS


# **TECHNICAL DATA: SENSOR UNIT**


| Medium temperature    | -40° C 210° C    |
|-----------------------|------------------|
| Number of pick-ups    | 1 or 2 pick-ups  |
| Pick-up               | Magnetoresistive |
| Electrical connection | cable gland      |
| Seals                 | FPM or EPDM      |

## **TECHNICAL DATA: AMPLIFIER**

| Supply voltage                  | $U_{\rm b} = 10 \dots 30 \text{ V DC} + / - 10\%$                                   |
|---------------------------------|-------------------------------------------------------------------------------------|
| Current consumption             | $I_{b}$ = approx. 18 mA (idle motion, without load)                                 |
| Signal output PP<br>(Push-Pull) | High Sign.: $U_s = U_{b}$ - 1,5 V;<br>Low Sign.: $U_s = 0$ V;<br>$I_s = 100$ mA max |
| Signal output PNP               | High sign: U <sub>s</sub> = U <sub>b</sub> – 1 V; I <sub>s</sub> = 25 mA max        |
| Signal output NPN               | Low sign: $U_s = 0$ V; $I_s = 25$ mA max                                            |
| Electrical connection           | 4 pin round plug M12                                                                |
| Max. ambient temperature        | -20°C 50°C                                                                          |
| Protection class                | IP 64                                                                               |

## **FLOW METER DIMENSIONS**





View X

| Size     | A   | D    | E    | ø G  | к    | L  | M  | N  | Р  | O-Ring       | Weight<br>kg |
|----------|-----|------|------|------|------|----|----|----|----|--------------|--------------|
| VS 0.04* | 100 | M 6  | 11.5 | ø 9  | 58.5 | 70 | 40 | 20 | 22 | 11 x 2       | 3.5          |
| VS 0.1   | 100 | M 6  | 9    | ø 9  | 61   | 70 | 40 | 20 | 22 | 11 x 2       | 3.3          |
| VS 0.2   | 100 | M 6  | 9.5  | ø 9  | 60.5 | 70 | 40 | 20 | 22 | 11 x 2       | 3.6          |
| VS 0.4   | 115 | M 8  | 11.5 | ø 16 | 63.5 | 80 | 38 | 34 | 22 | 17.96 x 2.62 | 4.9          |
| VS 1     | 130 | M 8  | 12   | ø 16 | 68   | 84 | 72 | 34 | 22 | 17.96 x 2.62 | 6.7          |
| VS 2     | 130 | M 8  | 15   | ø 16 | 85   | 84 | 72 | 34 | 22 | 17.96 x 2.62 | 8.3          |
| VS 4     | 180 | M 12 | 20   | ø 30 | 110  | 46 | 95 | 45 | 12 | 36.17 x 2.62 | 18.3         |

\*Attention: 0.04 with one (1) channel only

## **TYPE KEY**

VS 10

**TYPE KEY FLOW METERS VS** Pick-up system for high temperature ranges (...210°C) signal output PNP or NPN н Т **EXAMPLE** Т Χ Н **VS** 1 2 3 2 G Ρ 1 V Ν 1 Х 0 1 \_ Series Connection Pre-amplifier No. factory preset х Factory preset to the application VSE 4 pole plug connection (Standard design) Signal out-put 1 Quantity of pick-up 0 Non pre-amplifier Integrated 1. 2 External Factory preset to the application Pick-up system Ν Supply voltage 10 ... 28 V DC (Standard) Supply voltage 5 ... 10 V DC (Ex-design) Q Type of seal 1 1 pick-up 2 pick-up 2 3 GMR- Sensor Instrument tolerance ۷ FPM (Viton) Standard NBR (Perbunan) Ρ PTFE T EPDM Е В EPDM-41B8 Instruments bearing Silicone S Reduced tolerance 1 Normal tolerance (Standard) 2 Increased tolerance 3 4 Tolerance steel plain bearing 1 Ball bearing Gear coating Spindle bearing 2 Bronze plain bearing Type of connection 3 4 Carbon plain bearing Steel plain bearing 5 0 No coating (Standard) С Dynamat coating (C-surface coating) Titanium coating Material Т Plate construction Ρ Pipeline connections R EN-GJS-400-15 (VS10 = EN-GJS-600-3) DIN EN 1563 G Stainless steel 1.4305 (V2A) Size E EN-GJS-600-3 (High pressure) DIN EN 1563 н VS 0.02 VS 0.04 VS 0.1 VS 0.2 VS 0.4 VS 1 VS 2 VS 4

20 SUBPLATES AP

# **SUBPLATES AP**

## EXAMPLE

| Α        | Ρ | G          | 1                                                                                                                                                                                                  | _                                                                                                              | S | С                             | 0                                                                                                                                                                                                                                                                          | N         | / | X      |                                                                   |  |  |  |
|----------|---|------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------|---|-------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------|---|--------|-------------------------------------------------------------------|--|--|--|
|          |   |            |                                                                                                                                                                                                    |                                                                                                                |   | Connection thread             | Accessory connection                                                                                                                                                                                                                                                       | s version |   | Specia | Modification Id. No.<br>ard version<br>al version<br>e connection |  |  |  |
|          |   |            |                                                                                                                                                                                                    |                                                                                                                |   | A B C D E F G J K L M N O P S | 0       Without rinse connection         G 1/4       G 3/8         G 1/2       G 3/4         G 1       G 1 1/2         I/4 NPT       J/8 NPT         1/2 NPT       J/4 NPT         3/4 NPT       1 NPT         1 1/4 NPT       1 1/2 NPT         1 1/4 NPT       1 1/2 NPT |           |   |        |                                                                   |  |  |  |
|          |   |            | 8 <u>75</u><br>80,2<br>9,4<br>1                                                                                                                                                                    | ,2     VS 0,02 to VS 0,2 / VSI 0,02 to VSI 0,2       ,4     VS 0,4 / VSI 0,4       VS 1 / VS 2 / VSI 1 / VSI 2 |   |                               |                                                                                                                                                                                                                                                                            |           |   |        |                                                                   |  |  |  |
| Subplate |   | H Material | 4       VS 4 / VSI 4         10       VS 10 / VSI 10         EN-GJL-250, EN-GJS-400-15       DIN EN 1561/ 1563         Stainless steel 1.4305       EN-GJS-600-3       DIN EN 1563 (high pressure) |                                                                                                                |   |                               |                                                                                                                                                                                                                                                                            |           |   |        |                                                                   |  |  |  |

# **TYPE KEY**

## **TYPE KEY FLOW METERS VSI**

## EXAMPLE

| VSI 1                                                                                      | /                                                                                                                                                                                                   | 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                         | G                                                           | Ρ      | 0                       | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 2                                                                                                  | V                                                        | -                        | 3                                        | 2                           | W                      | 1             | 5                                            | /                                    | X                                                                                  | ••                                                   |                                                                                                                                 |
|--------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------|-------------------------------------------------------------|--------|-------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------|----------------------------------------------------------|--------------------------|------------------------------------------|-----------------------------|------------------------|---------------|----------------------------------------------|--------------------------------------|------------------------------------------------------------------------------------|------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------|
|                                                                                            |                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                         |                                                             |        |                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Factory preset to the application                                                                  |                                                          |                          |                                          | ensors                      |                        | ifier         | Connection                                   |                                      | X Product line                                                                     | a baby<br>Alddns<br>10 28 V                          | Power supply volt.                                                                                                              |
|                                                                                            |                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                         |                                                             |        |                         | ation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | o the o                                                                                            |                                                          |                          |                                          | k-up se                     | utput                  | Pre-amplifier | 1                                            |                                      |                                                                                    | orm connection (                                     |                                                                                                                                 |
|                                                                                            |                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                         |                                                             |        |                         | applic                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | oreset t                                                                                           |                                                          |                          | system                                   | of pic                      | Signal output          | Pre           | 5                                            |                                      |                                                                                    | plug connection                                      |                                                                                                                                 |
|                                                                                            |                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                         |                                                             |        |                         | to the                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | ctory p                                                                                            |                                                          |                          | ck-up :                                  | Quantity of pick-up sensors | Siç                    | 1             |                                              | Integr                               | ated (                                                                             | standard design)                                     |                                                                                                                                 |
|                                                                                            |                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                         |                                                             |        |                         | Factory preset to the application                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Fa                                                                                                 |                                                          |                          | Sensor pick-up system                    | Ø                           | w                      |               | VV in                                        | t. WE (                              | (power                                                                             | supply volt. 10 .                                    | 28 V DC)                                                                                                                        |
|                                                                                            |                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                         |                                                             |        |                         | actory                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                    | Seal type                                                |                          | Sei                                      | 2                           |                        | 2 Sen         | sors                                         |                                      |                                                                                    |                                                      |                                                                                                                                 |
|                                                                                            |                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                         |                                                             |        |                         | Fe                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Instrument tolerance                                                                               |                                                          |                          | 3                                        |                             | GMR-                   |               | or                                           |                                      |                                                                                    |                                                      |                                                                                                                                 |
|                                                                                            |                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                         |                                                             |        |                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                    | V<br>P<br>T<br>B<br>S                                    |                          | NBR (<br>PTFE<br>EPDM<br>EPDM<br>Silicor | Perbur<br>- 41B<br>ne       | ·                      | ra            |                                              |                                      |                                                                                    |                                                      |                                                                                                                                 |
|                                                                                            |                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                         |                                                             |        | Measuring wheel coating | Instrument bearing                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1<br>2<br>3<br>4                                                                                   |                                                          | Norm<br>Increc<br>Tolerc | ised to<br>ince ste                      | ance (<br>lerance           | standa<br>e<br>in bear |               |                                              |                                      |                                                                                    |                                                      |                                                                                                                                 |
|                                                                                            | 0   1   Ball bearings     2   Spindle bearings     3   Bronze plain bearings     4   Carbon bearings     5   Steel bearings     6   0     No coating (standard)     2   Dynamat coating (C-coating) |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                         |                                                             |        |                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                    |                                                          |                          |                                          |                             |                        |               |                                              |                                      |                                                                                    |                                                      |                                                                                                                                 |
|                                                                                            |                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                         | _                                                           | Type o | O<br>C                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Dynan                                                                                              | ating (<br>nat coc                                       | ating (O                 |                                          | ng)                         |                        |               |                                              |                                      |                                                                                    |                                                      |                                                                                                                                 |
|                                                                                            |                                                                                                                                                                                                     | u                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                         | Material                                                    | Р      |                         | Plate c                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | onstru                                                                                             |                                                          |                          |                                          |                             |                        |               |                                              |                                      |                                                                                    |                                                      |                                                                                                                                 |
|                                                                                            |                                                                                                                                                                                                     | Image: Second state of the construction     Image: Second state of the construction <t< td=""><td></td></t<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                         |                                                             |        |                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                    |                                                          |                          |                                          |                             |                        |               |                                              |                                      |                                                                                    |                                                      |                                                                                                                                 |
| Size                                                                                       |                                                                                                                                                                                                     | 1<br>2<br>3<br>4<br>5<br>8<br>10<br>12<br>16                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | for VSI 0.02 to VSI 4                                                   | 2 Imp<br>3 Imp<br>4 Imp<br>5 Imp<br>8 Imp<br>10 Im<br>12 Im |        |                         | $= \bigvee_{z}^{2} \\ = \bigvee_{z}^{2} \\ $ | oro Imp<br>/ 2 pro<br>/ 3 pro<br>/ 4 pro<br>/ 5 pro<br>/ 8 pro<br>/ 10 pro<br>/ 12 pro<br>/ 16 pro | Imp.<br>Imp.<br>Imp.<br>Imp.<br>Imp.<br>o Imp.<br>o Imp. |                          |                                          |                             |                        |               | 1<br>2<br>3<br>4<br>5<br>8<br>10<br>12<br>16 | 6<br>9<br>12<br>15<br>24<br>30<br>36 | lmp. pro<br>lmp. pro<br>lmp. pro<br>lmp. p<br>lmp. p<br>lmp. p<br>lmp. p<br>lmp. p | $\begin{array}{llllllllllllllllllllllllllllllllllll$ | 3 pro Imp<br>6 pro Imp.<br>9 pro Imp.<br>12 pro Imp.<br>15 pro Imp.<br>24 pro Imp.<br>30 pro Imp.<br>36 pro Imp.<br>48 pro Imp. |
| VSI 0.02<br>VSI 0.04<br>VSI 0.1<br>VSI 0.2<br>VSI 0.4<br>VSI 1<br>VSI 2<br>VSI 4<br>VSI 10 |                                                                                                                                                                                                     | $\bigvee_{z}^{z} = \bigvee_{z}^{z} = \bigvee_{z$ | 0.02 m<br>0.04 m<br>0.1 m<br>0.2 m<br>0.4 m<br>1 m<br>2 m<br>4 m<br>0 m | <br> <br> <br> <br>                                         |        |                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                    |                                                          |                          |                                          |                             |                        |               |                                              |                                      |                                                                                    | lume (cm <sup>3</sup> )<br>volume betweer            | n the gear teeth                                                                                                                |

# FLOW RATE MEASURING INSTRUMENT MF1 FOR 2-CHANNEL FLOW SENSOR



Flow direction indication with switching output (0 V/5 V)

2 optocoupler limit value outputs, limit values are individually programmable

Analogue output with flow rate direction dependent voltage-/current-polarity is available

0 ... (±) 10 V

- 0 ... (±) 20 mA
- 4 ... 20 mA

A power supply for flow sensor is integrated 24 Volt DC/50 mA

# UNIVERSAL MEASURING INSTRUMENT VFM 320 FOR DYNAMIC PROCESS MEASUREMENTS AND CLOSED LOOP CONTROLS



Flow rate, volume and ratio measurements as well as measurement and control of volume-shots or mass-shots in 2-component mixing systems

Signal processing of 2 flow sensors with 2-channel signal outputs

2 independent dynamic analogue outputs with 16 Bit digital-analogue converter D/A-converter:

<3 ms (0 Hz -> 2 kHz -> 0 Hz)

The flow rate and volume values are direction dependent

(0 V Flow in direction 2 5 V Flow in direction 1 10 V)

or direction independent

(10 V  $\stackrel{\text{Flow in direction 2}}{\longleftarrow}$  0 V  $\stackrel{\text{Flow in direction 1}}{\longrightarrow}$  10 V)

Real time output of analogue and digital measurement values

PC-Interface 1 x RS 232, 2 x RS 485

Special designs on request

# FLOW RATE MEASURING INSTRUMENT A341-28



The evaluation electronics A341-28 simultaneously records two independent flows via flow meters and is suitable for incremental rotary transducers, proximity switches, etc.

Two individually scalable pulse inputs for 1, 2 or 4 tracks (A, /A, B, /B), suitable for input frequencies of 0.01 Hz to 1 MHz per channel

Single measurement, sum or differential measurement, ratio or percentage deviation, etc.

Linearisation function for each flow measurement

5 independent parameter sets presettable

14-bit analogue output; 0/4 ... 20 mA, 0 ... 10 V and -/+ 10 V; <1 ms reaction time

4 limit value settings with very fast responding transistor switch outputs

Programmable via an RS232 interface

2x encoder supply 24 VDC/120 mA

Standard housing 96 x 48 mm and protection class IP65

# DISPLAY A350-28



The A350-28 is a multifunctional device for flow and volume measurement.

Universal inputs (HTL/RS422) for encoders / VSE flow meters

186 x 64 pixel graphic display with touch function Bright, high-contrast display with result-based colour options

Emulation of a 7-segment display with symbols and units

Intuitive and easy parameterisation using plain text and touchscreen or via a RS232 interface

Auxiliary voltage output 5/24 VDC for encoder supply

Input frequency up to 1 MHz

Linearisation with 24 support points

16 bit analog output 0/4 ... 20 mA, 0 ... 10 V and -/+ 10 V; 20 ms reaction time

Numerous functions such as scaling, filters, startup bridging

Standard installation housing with 96 x 48 mm and protection class IP65

# **SIGNAL CONVERTER FU210**



Operating modes as frequency converter or pulse counter Conversion time only < 1msec 16 Bit resolution (accuracy 0.1%) Selectable analogue output: ±10 V, 0/4...20mA Programmable linearisation with 24 points 6 control inputs and 6 control outputs Power supply 18 ... 30 VDC Easy parameterisation by user interface EASYLOADER or OS 6.0 via USB or RS232

# FREQUENCY-/ANALOGUE CONVERTER DIGFU 1



Converter output signal for operation with 1-channel flow sensor

0 ... 10 V

- 0 ... 20 mA
- 4 ... 20 mA

Converter output signal with flow direction polarity for operation with 2-channel flow sensor

0 ... ± 10 V

 $0\ ...\ \pm\ 20\ mA$ 

Evaluation of flow direction via digital output signal possible if a 2-channel flow sensor is connected

Proportional to flow frequency a digital output frequency signal with multiplier factor is adjustable

# SIGNAL CONVERTER PGW-1 FOR 2- OR 1- CHANNEL FLOW SENSORS TO CONVERT FLOW SENSOR OUTPUT SIGNALS INTO OTHER VOLTAGE LEVELS



For example: for chart recorder with impulse input, forward-/reversecounter, computer, PC- and PLC controls

Available output voltages: TTL 5 V, 8 V, 12 V, CMOS 15 V

Power supply/current consumption: 10 ... 30 V DC, 20 mA without flow sensor

Inverted and non-inverted output signal for both channels integrated among other things for connection on differential count inputs to achieve a distortion-free signal transmission over long cable distances

## **BARRIER AMPLIFIER MK-13**



Economical interfaces with galvanic isolation between intrinsically safe and non-intrinsically safe circuits

Must be installed in the safe area

Are used to limit the electrical power into an intrinsically safe circuit in such a way that neither sparks nor thermal effects (hot surfaces) can cause an ignition

Connection diagram and exact type no. see page 16

# 26 PRODUCT OVERVIEW

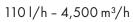


**RS SERIES** 

0 - 3,000 l/min



**VHM SERIES** 


0.01 - 20 l/min



EF ECOFLOW SERIES 0.05 - 150 l/min



**VTR SERIES** 





**SPECIAL OPTIONS** 



VSE Volumentechnik GmbH Hönnestraße 49 58809 Neuenrade/Germany

Phone +49 (0) 23 94 / 616-30 Fax +49 (0) 23 94 / 616-33 info@vse-flow.com www.vse-flow.com



e.holding FLUID TECHNOLOGY GROUP www.e-holding.de